

T center for technology transfer and innovation

Tel.: +386 1 477 3224 e-mail: tehnologije@ijs.si

Jamova cesta 39, SI - 1001 Ljubljana, Slovenia www.ijs.si

CONFIDENTIAL

TECHNOLOGY OFFFR

Protein degradation method for cleaning of textiles, surfaces, and equipment

Jozef Stefan Institute, Slovenia has developed an efficient method for degradation of proteins, protein aggregates and deposits by using a thermally stable serine protease. The method is applicable for sterilization of surgical equipment in hospitals, cleaning of textiles, and in molecular biology protocols, and is efficient in a broad range of temperatures, pH values, and in presence of detergents. The researchers seek license or technical cooperation agreements.

Key words: Cleaning Technology, Soaps, detergents, Enzyme Technology, Protein Engineering, Food Microbiology/Toxicology/Quality Control,

Hospital equipment and surfaces contaminated with prions represent a constant health risk since prion proteins notoriously resistant to hiah are temperature and aggressive detergent treatments, making it difficult to sterilize equipment standard such using procedures. Moreover, there is no effective way to clean protein films in water pipes. There is need of a new, efficient, and environmentally friendly way of inactivation, elimination, and/or degradation of prion proteins. Currently used methods for prion degradation include application of extreme conditions

The core of the invention solves these problems by introducing a simple and efficient protein degradation method using a thermally stable protease pernisine, obtained from the organism Aeropyrum pernix. The invention further includes a procedure in which

pernisine is produced (expressed) in a laboratory bacterium common Escherichia coli (E. coli), and the protein gene sequence is specifically modified to allow for higher yields. The recombinant pernisine, purified from the lysed culture supernatant, is effective against soluble proteins as well as protein deposits.

Recombinant pernisines may be used (i) as replacement of proteinase K in molecular biology purification protocols (including kits); (ii) for sterilization of surgical equipment in hospitals; (iii) for cleaning of textiles (as component of washing powders and detergents); (iv) for removing allergenic peptides in food industry, or (v) for cleaning of solid surfaces with protein deposits (water pipes, bioreactor walls, etc.).

Since the technology aims to reach its full potential in cleaning products, industrial partners, such as detergent producers, are sought. Technical cooperation is sought in order to facilitate continuous development rather than just routine

center for technology transfer and innovation

protein stability studies.

Tel.: +386 1 477 3224 e-mail: tehnologije@ijs.si

CONFIDENTIAL

production. License agreements and / or agreements for technical cooperation will enable the researchers to maintain their focus on the research behind the technology whereas up-scaling to industrial level will be carried out in the industrial partner's setting.

Advantages:

• pernisine degrades protein aggregates rapidly compared to other enzymes (in less than 10 min) and is much more effective than the commonly used proteinase K;

• high efficiency allows for degradation of higher concen-trations of contaminants

• pernisine is thermally stable and efficient in a broad temperature range (50-125°C);

• pernsine is robust, it works in a wide pH range (3-10) and in presence of detergents and other denaturants (urea, gvanidinium hydrochloride...);

• pernisine is environmentally friendly compared to aggressive chemical agents;

• pernisine may be used in combination with detergents;

• expression in E. coli eliminates the need for extreme cultivation conditions;

• expression in E. coli leads to higher yields (and in shorter time) compared to A. pernix;

• specific modifications allow for simple purification and detection of pernisine.

The researchers are among the leading scientists in their respective departments, and regularly publish in highimpact scientific journals. They are experts in the field of protein chemistry and biochemistry, extraction, purification, and isolation of proteins from thermophilic microorganisms, and

Type of partner sought: Industry, academy, research organisation.

Specific area of activity of the partner: distribution of proteins, production of washing powders and cleaning products, sterilization of medical devices (surgical equipment).

Task to be performed by the partner sought: licensing in the technology for the purpose of application in cleaning formulations and procedures as well as industrial-scale production; entering technical cooperation agreements for the purpose of further development of sterilization procedures and optimisation of enzyme production.

STAGE OF DEVELOPMENT

Under development/lab tested

INTELLECTUAL PROPERTY

Patent(s) applied for but not yet granted Patents granted

CONTACT DETAILS

Levin Pal Center for Technology Transfer and Innovation, Jožef Stefan Institute Jamova cesta 39, SI-1000 Ljubljana, Slovenia <u>http://tehnologije.ijs.si</u> Phone: +386 1 477 3303 E-mail:<u>levin.pal@ijs.si</u>