
Solar Fuels Research at IMO-IMOMEC

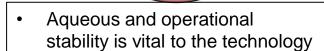
Solar Fuel research elements @ imo-imomec

- Bandgap 1 2 eV, due to high
 thermodynamic uphill for specific reactions
 - Efficient and wide-spectrum absorption systems are to be developed

e and h are generated here

- e⁻ and h⁺ carrier selectivity is vital to facilitate proper elementary reactions
- Interface (solid-solid and solid-liquid) charge exchange layers are required as its a multi-state system

Charge transport


Electrocatalysis

Light

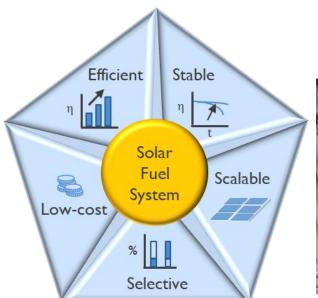
absorption

Catalysis

Photocatalysis

Stability

- Co-catalysts should be engineered as they could selectively determine the end products
- Catalyze the sluggish kinetics of reactions



Materials for solar fuels: Thin films and Porous Diffusion Electrodes

Preparation Processes

Material selection criteria of imo-imomec

Sulfurization/selenization

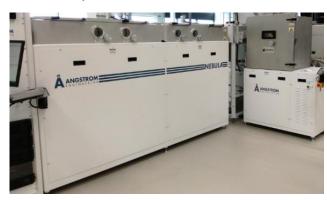
Sputtering/Evaporation

Tube furnace

Rapid thermal annealing

As explored materials in our lab: Cu₂Se, Cu(In,Ga)(S,Se)₂, Cu₃BiS₃, Sb₂S₃, MoS₂

As explored materials in our lab: Cu/ZnO, Cu₂O, ZnO



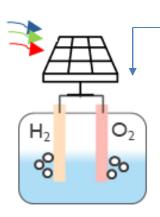
Deposition, solution, and scale-up facilities

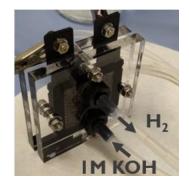
35x35 cm² Linear Sputtering and Co-evaporation cluster tool

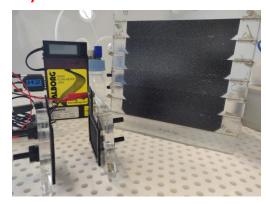
Thermal evaporator

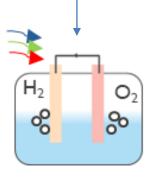
30x30 cm² slot die coating

30x30 cm² picosecond laser scribing




Device fabrication facilities @ imo-imomec


Solar Fuel devices


PV-Electrolysis cell

Electrochemical flow cell

Solar cell-PEC flow cell assembly

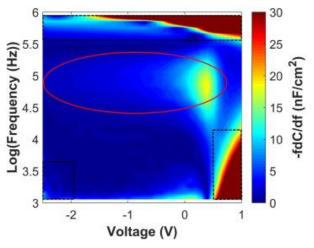
Photoelectrochemical cell

PEC cell with electrodes

Designated Electrochemical workstation



Characterization facilities @ imo-imomec


Tabletop SEM tool

Hall set-up

Steady state and transient Photoluminescence spectroscopy reachable up to ~ 80 K

Admittance spectroscopy

Access to IMEC/UHasselt **Characterization facility:**

X-ray diffraction Atomic force microscopy Secondary Ion Mass Spectroscopy Photoelectron Spectroscopy Photocurrent spectroscopy

In a nutshell...

Facilities for characterization

Morphology and composition

- SEM
- EDS
- XPS/UPS
- SIMS
- AFM

Structural

X-Ray diffraction

Electrical

- Hall Setup
- Admittance spectroscopy

Photo characterization

- Photoluminescence
- Photocurrent spectroscopy

Material synthesis capabilities

Sulphides/Selenides Thin Film

- Cu₂Se
- Cu(In,Ga)(S,Se)₂
- Cu_3BiS_3
- Sb_2S_3
- MoS_2

Oxide Thin Film

- Cu/ZnO
- Cu₂O
- ZnO
- NiOx
- SnOx

Halide perovskites

- MAPbl₃
- FAPbl₃
- $Cs_xFA_{1-x}Pb(I,Br)_3$

Co-catalysts

- Co/Ni-S
- NiO_x

Manufacturing facilities

- 35x35 cm² Linear Sputtering and Co-evaporation cluster tool
- 30x30 cm² slot die coating
- 15x15 cm² Blade coater
- 30x30 cm² picosecond laser scribing
- Module encapsulation tool

Current projects associated with Solar Fuels.

Kesterite based Photoelectrodes for Water and Nitrogen Reduction (**KESPER**) (https://www.uhasselt.be/en/projects/detail/24269-project-r-13406)

 Demonstration of photoelectrodes for renewable generation of hydrogen and ammonia

Partners:

Novel nanomaterials and nano-architectures for CO2 capture and utilization (Nano-CCU) (https://moonshotflanders.be/mot3-nano-ccu/)

 Convert CO2 from flue gasses into a valuable platform molecule for the chemical industry.

Partners:

(https://www.uhasselt.be/en/projects/detail/21780-project-r-12321)

 Conversion of CO₂ into renewable materials via electrified routes

Partners:

Procura Belgium (https://procurabelgium.be/en)

• Power to X, carbon capture & utilization roadmap for Belgium

Partners:

Synergetic design of catalytic materials for integrated photo-and electrochemical CO₂ conversion(**SYN-CAT**)

(https://moonshotflanders.be/mot3-syn-cat/)

• Demonstration of GDEs integrated with Cu/ZnO bilayer catalyst, Cu,

Cu₂-xSe, ZnO, Cu₂O for CO₂R

Partners:

Point of contact

✓ Prof. Bart Vermang, Bart.Vermang@imec.be

